A Combined Process for Production of Fumaric Acid and Xylooligosaccharides from Corncob

نویسندگان

  • Xin Li
  • Lei Yang
  • Ximei Gu
  • Chenhuan Lai
  • Caoxing Huang
  • Qiang Yong
چکیده

Production of fumaric acid and xylooligosaccharides from corncob was investigated using a combined process. Corncob was fractionated into a cellulose-rich fraction and a hemicellulose-rich fraction by an alkali pretreatment. The cellulose-rich fraction was converted into fumaric acid by Rhizopus oryzae in fed-batch simultaneous saccharification and fermentation (SSF). Maximal fumaric acid concentration reached 35.22 g/L at a final 15% (w/v) solid loading in the fed-batch SSF. The hemicellulose-rich fraction was converted into xylooligosaccharides (XOSs) by endo-β-1,4-xylanase. The yield of XOSs was 62.35% after 24 h of xylanase hydrolysis. Xylobiose, xylotriose, and xylotetraose were the three major components in the XOSs. A mass balance analysis demonstrated that 100.6 g of fumaric acid and 148.1 g of XOSs were produced from 1000 g of dry corncob matter. The production of fumaric acid and XOSs by the combined process could make the utilization of corncob more efficient and more promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolationand Characterization of Nanocrystal from Corncob Waste Using H2SO4 Hydrolysis Method (RESEARCH NOTE)

Corncob is one of the industrial waste has cellulose content of 39.1 wt%, which makes it has high potential to be a raw material in the production of cellulose nanocrystal. Corncob was delignificated with 3.5 wt% HNO3 and NaNO2 10 mg, precipitated process with 17.5 wt% NaOH, and bleached with 10 wt% H2O2. Cellulose nanocrystal was obtained by hydrolysis using 45 wt% H2SO4. Corncob and cellulose...

متن کامل

Production of Fumaric Acid by Rhizopus oryzae in Simultaneous Saccharification and Fermentation using Xylo-Oligosaccharides Manufacturing Waste Residue

Production of fumaric acid from xylo-oligosaccharides manufacturing waste residue (XOR) by Rhizopus oryzae CICC 40351 was investigated in a simultaneous saccharification and fermentation (SSF) process. The fermentation conditions for SSF were optimized by an orthogonal design method to maximize the fumaric acid concentration. The highest fumaric acid concentration (12.54 g/L) was reached with a...

متن کامل

Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was ...

متن کامل

Determination of Carboxylic Acids in Apple Juice by RP HPLC

Low molecular weight organic acids are most predominant in apple juice among these components fumaric acid was not exceed more than 5 ppm. It was thought that the HPLC is the best method of the determination of organic acids in the apple juice. In this study, chromatographic separation of organic acids of apple juice was obtained by preparing a sample and by applying them to acid phase for ...

متن کامل

Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis.

In this paper, we produced hemicellulosic hydrolysate from corncob by tetrabutylammonium hydroxide (TBAH) extraction and dilute acid hydrolysis combined, further evaluating the feasibility of the resultant corncob hemicellulosic hydrolysate used in xylitol production by Candida tropicalis. Optimized conditions for corncob hemicellulose extraction by TBAH was obtained via response surface method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017